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Introduction
Stimulated Brillouin scattering (SBS) is an instability

in which intense laser light incident on a target can
decay into a scattered light wave and an ion sound
wave. The process requires frequency and wave vector
matching (i.e., ω0 = ωsc + ωi and k0 = ksc + ki), which
corresponds to energy and momentum conservation.
Here ω0 (ωsc) is the frequency of the incident (scat-
tered) light wave; ωi is the frequency of a sound wave
in the plasma; and k0, ksc, ki are the corresponding
wave vectors. It is important to understand and con-
trol this instability to optimize energy deposition in
inertial fusion targets. 

Although there has been much progress in character-
izing SBS in experiments,1,2 a better understanding of
the nonlinear behavior is clearly needed. The nonlinear
behavior of the ion wave is particularly complex.
Collisionless particle-in-cell (PIC) simulations3–7 have
emphasized strong distortions in the ion distribution
function near the ion wave phase velocity. The damp-
ing and dispersion of the driven ion wave are then
determined by nonlinear processes, such as trapping,
self-consistent tail formation, and mode coupling. It
should be emphasized that the distributions are modi-
fied quite rapidly even when the driven ion wave has a
rather small amplitude. A characteristic time for the ion
distribution to distort is τb = π/ωb, where ωb is the
bounce frequency of a resonant ion in the potential
trough of the ion wave. Here ωb = (ZeEki/M)1/2, where
E is the electric field, ki the wave number, Z the ion
charge state, and M its mass. For even a very small ion
wave amplitude corresponding to a fluctuating density
δn/n ≈ 1%, the bounce time is only about 1 ps in typical
experiments using 0.35-µm lasers. 

It is readily seen that ion–ion collisions can
strongly reduce these distortions of the ion distribu-
tion function, especially in high-Z plasmas found in
laser-irradiated hohlraums. The scattering rate of an

ion at the phase velocity [approximated as the sound
speed, Cs ≡ (ZTe/M)1/2] is

(1)

where Te (Ti) is the electron (ion) temperature and τi is
the Braginskii ion–ion collision time

(2)

Here, ni is the ion number density and λii is the Coulomb
logarithm for ion–ion collisions. The time required for
collisions to restore the distribution is determined by the
trapping width (δvtrap ≈ 2ωb/ki) and ν⊥ :

(3)

These arguments are easily generalized to the case of a
plasma composed of a light minority species (α) and a
heavy species (β). 

In the following example, Be is added to a Au
plasma8 to increase the Landau damping of the ion
waves. For an equal mixture Au+50/Be+4 plasma, with
electron temperature Te = 3 keV, δn/n = 0.05, electron
plasma density ne = nc/4 (nc = critical density), and
ki = 3.5 × 105/cm1 (≈ 2k0 for blue laser light): τdetrap 
≈ τbounce ≈ 1 ps. Similar results can be estimated for
recent gas bag experiments with Xe/H mixtures.9

In addition to countering and/or modifying tail for-
mation in the nonlinear state, ion–ion collisions can
inhibit the transport of heated ions from the interaction
region. (In collisionless simulations, they simply free-
stream away.) The reduced transport enhances the local
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ion heating, which can reduce the instability growth.
Such an effect will be particularly important on long
time scales, when significant energy has been trans-
ferred via the driven ion waves.

Hybrid Simulation Model
Hybrid simulations, which model some physical

species with particles and others with fluids, have
been applied to a wide variety of problems in magneti-
cally confined fusion plasmas and space plasma
physics. Typically, the regime of interest is such that
the ions are essentially collisionless and require a
kinetic treatment, while the electrons may be repre-
sented by a fluid. More recently, such simulation mod-
els are being applied to laser-generated plasmas.4–7

Our simulations are performed in one spatial dimen-
sion, using a PIC description for the kinetic ions and
an isothermal electron fluid at constant temperature
Te. The particle ion velocities and positions are simply
advanced by 

(4)

using the longitudinal electric field Ex = –∂Φ/∂x. The
electrostatic potential Φ is found from solution of the
nonlinear Poisson equation in terms of the total ion
charge density and the electron density (ne) given by a
Boltzmann relation, 

(5)

The use of a reduced treatment for the electrons
enables efficient simulation of longer time scales; in
particular, the restriction of resolving the electron
plasma frequency is relaxed. The ponderomotive
potential is accumulated in time 
during the explicit advance of the electromagnetic field
equations and transverse electron fluid velocity (uy),
which are subcycled in time relative to the ion particle
advance. Use of the nonlinear Poisson equation retains
the physics of charge separation due to finite-electron
Debye length, and hence includes modifications to the
ion-acoustic dispersion relation embodied in the 
linear dispersion relation , where 
λDe = (4πnee2/Te)–1/2 is the Debye length.

Although for the parameters considered here the
dispersive effect of finite kλDe is small, the smoothing
achieved is beneficial in reducing numerical heating, a
major concern for these high ZTe/Ti plasmas.10

Additionally, we use quadratic splines to interpolate
between particles and grid and large numbers of parti-
cles per cell, typically 200 to 400 for each ion species.
The use of quadratic splines reduces numerical heating
approximately an order of magnitude compared to 
linear interpolation.

Ion–ion collisions between particles are handled
using a scheme substantially like that developed by
Takizuka and Abe.11 Particles sharing the same spatial
cell are randomly paired up and then undergo a colli-
sion irrespective of their positions in the cell. Each 
collision is kinematically correct, thus ensuring micro-
scopic momentum and energy conservation. For 
scattering between species α and β, the collision is 
performed in the center of mass frame for each particle
pair with a polar scattering angle picked from a
Gaussian distribution of width,

(6)

where mαβ = mαmβ/(mα + mβ) is the reduced mass and
δv is the relative velocity between each scattering pair.
The collisional time period δt is typically equal to the
particle advance time step ∆t or a small multiple of it.
The azimuthal scattering angle is picked uniformly
over the interval [0, 2π]. The postcollision velocity of
the particle from species β is given by the kinematic
relations. The Coulomb logarithm λαβ is set to a con-
stant in these simulations and provides a convenient
multiplier to vary the collisionality. Extensive tests
have verified that this method is equivalent to a
Fokker–Planck description of cumulative small-angle
Coulomb scattering. In the multispecies simulations
performed here, typically only the light–heavy species
(α–β) collisions were included. The rate of collisions
between light ions (α–α) is typically low enough to
ignore, while the heavy–heavy (β–β) collisions also
contribute little to wave damping. In fact, failure to
properly resolve the short collisional scales for
heavy–heavy collisions can artificially enhance the
wave damping rate.

Wave Damping 
As a simple illustrative example of the relevant

physics, we first consider the damping of a finite-
amplitude ion wave composed of a mixture of light
and heavy ions. The linear damping of such a mixed-
species plasma has been discussed by several authors,
both with12,13 and without14 collisions. Consider the
Au/Be plasma previously discussed. We can estimate
the ion Landau damping in the absence of collisions 
to be approximately γi ≈ 0.07ωi. Figure 1a shows the
time history of the electron fluid velocity from a simu-
lation of a single wavelength, initially with amplitude
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perturbation δn/n = 0.05. (Because the plasma is initial-
ized as a standing wave, the total initial ion density
perturbation is the sum of left- and right-going
waves, 2δn/n = 0.10). We can clearly see the initial
linear decay with γi ≈ 0.07ωi, followed by a recur-
rence due to nonlinear trapping; this occurs at time 
t ≈ 1 ps ≈ τb. The ion velocity distribution is presented
in Figure 1b, clearly showing the nonlinear distortion
near the phase velocity of the ion wave. In contrast, a
simulation including ion–ion collisions between the
Au and Be particles is also shown, which displays
steady linear damping.

It is important to note that the linear damping rate
is unaffected by this level of collisions (λαβ = 2). This is 
consistent with estimates for the amount of damping
contributed by frictional and viscous effects caused by
collisions, γcollision ≈ 5 × 10–3 ωi << γLandau.

13 Increasing 
or decreasing the collisionality by a factor of two was
observed to have essentially no effect, either on the 
linear damping rate or the supression of trapping.
Significantly decreasing the collision rate eventually
returns to the collisionless result of nonlinear trapping;
significantly increasing the collisionality eventually
suppresses Landau damping, and the wave damping
rate is observed to monotonically decrease with fur-
ther increases in collisionality. (Much like the situation
of a single-ion species,15 a mixture with reduced ion
Landau damping, e.g., Te/Ti = 8, exhibits a maximum
in the wave damping for ναβ ≈ ωi, where ναβ is the 
generalization of Branginskii’s collision time for 
multiple species13). 

Self-Consistently Driven Ion Waves
We now consider a case with ion waves self-

consistently driven by SBS. The system is a finite-
length plasma slab composed of the same Au/Be
plasma just considered, with laser light (wavelength 
λ0 = 0.35 µm) of intensity I0 = 4.0 × 1015 W/cm2, 
incident from the left-hand side. The plasma slab is
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composed of an active plasma region (represented by
particles) L = 11 µm, buffered between fixed ion
regions; the fixed ions prevent plasma expansion
driven by the ambipolar field at the slab edges, which
have linear density ramps to minimize reflection. The
density profile is shown in Figure 2a for a collisionless
case, illustrating the geometry as well as showing the
strong ion wave fluctuations present in this case due to
SBS. The time-dependent reflectivity is presented in
Figure 2b; note that it reaches a very high level, R ≈
80%. Inspection of the ion velocity phase space shows
trapping of resonant ions in the large-amplitude
waves, δn/n ≈ 15–20%. For comparison, an identical
case except for ion–ion collisions (λαβ = 2) is also 
presented that shows a significant decrease in the satu-
rated reflectivity R < 1%. For this case, the instability
saturates at a much lower level, δn/n ≈ 2–3%, and
although the ion velocity distribution shows strong
heating, the slope of the distribution is observed to still
be monotonic. We note that a reduction in the reflec-
tion is one effect in the right direction, because colli-
sionless simulations have typically predicted too much
reflectivity from large regions of plasma. 
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FIGURE 1. Damping of a small-amplitude wave in a Be/Au plasma:
(a) time history of electron fluid velocity and (b) velocity distribution
of Be ions for collisionless (gray line) and collisional (black line) 
simulations. (50-00-0898-1711pb01)
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FIGURE 2. Simulations of SBS in a Be/Au plasma: (a) electron den-
sity from a collisionless simulation and (b) time-dependent reflectivi-
ties from collisionless (gray line) and collisional (black line)
simulations. (50-00-0898-1712pb01)

The saturated ion wave amplitude for the colli-
sional case is consistent with our earlier estimates of
the level below which collisions can repopulate the
resonant region and counteract trapping. The colli-
sion rate necessary to maintain wave damping
depends on the strength of the instability driving the
ion waves. This is illustrated by a set of simulations
presented in Figure 3 for a fully ionized CH plasma
(1:1, ne = nc/4, Te = 10Ti = 3 keV, L = 22 µm). In 
Figure 3a, the time-dependent reflectivity for an 
incident intensity of I0 = 2.7 × 1015 W/cm2 is com-
pared for a collisionless simulation and three colli-
sional runs employing half, nominal, and double



collisionality (λαβ = 2, 4, and 8 respectively); all the col-
lisional runs are similar with peak reflectivity R ≈ 1%. A
similar insensitivity was found for the Au/Be plasma
case previously described. In contrast, increasing the
incident pump strength to I0 = 3.4 × 1015 W/cm2 , as
shown in Figure 3b, drives the ion waves strongly
enough that the case with collisionality halved now
nearly follows the collisionless result. If the collision
rate is significantly increased, however, the wave
damping is decreased, increasing the linear gain and
increasing the reflectivity. An additional simulation at
I0 = 3.4 × 1015 W/cm2 with collisionality increased 
by a factor of thirty clearly showed faster instability
growth, consistent with the decreased damping 
(γi/ωi ≈ 0.06 measured in a linear wave damping test).
In spite of this, the saturated reflectivity (R ≈ 10%) was
still lower than the collisionless result. 

A number of self-consistent SBS simulations are
summarized in Figure 4, which shows peak reflectivity
as a function of the linear gain exponent 

(7)

where v0/ve is the ratio of an electron’s quiver velocity
in the pump laser field to its thermal velocity. In all the
simulations, the electron parameters were ne = nc/4 and
Te = 3 keV. We see that the collisionless reflectivities are
all very large and only weakly dependent on the gain.
In contrast, the simulations including ion–ion collisions
more nearly follow an exponential gain relationship, 
R ≈ R0exp(Q), until the gain is large enough to drive
the ion wave amplitude beyond the level where colli-
sions keep pace with the trapping. In addition to the
Au+50/Be+4 and C+6/H+ plasmas, simulations are also
shown for a Xe+44/H+ mixture (1:4, Te = 2Ti, λαβ = 2, 
L = 11 µm) with similar behavior. This Xe/H plasma 

differs fundamentally in that the resonant ion wave is
the slow mode, with phase velocity smaller than the
proton thermal velocity. Simulations of the damping of
small amplitude waves determined the damping rates
used in Eq. 7 to calculate the linear gain, γi/ωi ≈ 0.10
for the C/H plasma and γi/ωi ≈ 0.05 for the Xe/H
plasma. 

In addition to affecting tail formation, ion–ion colli-
sions can inhibit the transport of heated ions from the
interaction region. We illustrate this with a simulation
of a single-species plasma, Au+50 (ne = nc/4, Te = Ti 
= 3 keV, L = 11 µm). The sound speed Cs = 2.7 × 
107 cm/s is much larger than the ion thermal velocity 
vi = (Ti/mi)

1/2 = 3.8 × 106 cm/s, so that ion Landau
damping is very weak. (In fact, no resonant particles
are initially present in the simulation.) Because of the
large ratio of sound speed to thermal velocity, colli-
sional damping of the wave is also very small, in spite
of the large collision rate τiωi ≈ 0.10. Thus, the reflectiv-
ities from two simulations with and without collisions
are initially very similar, as shown in Figure 5a. The
driven ion waves are very large, so that collisions are
slow to repopulate the tail. Collisions are effective,
however, in preventing the heated ions from free-
streaming out of the simulation as rapidly as occurs in
the collisionless case. Figure 5b shows the mean ion
energy         as a function of position from the colli-
sional simulation at two different times; although not
Maxwellian, the ion distribution is fairly isotropic. 
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FIGURE 3. Time-dependent SBS reflectivities for CH plasma compar-
ing collisionless (gray line) and collisional (black lines) simulations for
intensity (a) I0 = 2.7 × 1015 W/cm2 and (b) I0 = 3.4 × 1015 W/cm2; three
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At late time (t > 100 ps), the mean ion energy exceeds
20 keV for much of the simulation region, and the
reflectivity is significantly reduced compared to the
collisionless run. This decrease in reflectivity can be
interpreted as being due to the increase in linear
damping of the ion waves. This increase in linear
damping may be due to Landau damping from the
nonlinearly populated tails, but is also due to increased
collisional damping. Assuming a Maxwellian with 
Ti = 15 keV ≈ 2        /3, the collisional wave damping15

is γi/ωi ≈ 0.04, and the linear gain exponent of the sys-
tem is reduced to Q ≈ 7. The late-time reflectivity is
consistent with this reduced gain. 

Conclusion
In summary, we have shown the important effect

that ion–ion collisions can have on SBS. By restoring the
nonlinearly distorted distribution function, damping is
maintained closer to the linear value, significantly
reducing the reflectivity observed in simulations. The
fact that damping is maintained close to the linear

value for finite-amplitude ion waves is important to the
interpretation of recent experiments,9,16 which have
observed an inverse correlation between stimulated
Raman scattering and linear ion wave damping, as well
as one important justification for reduced descriptions
of coupled parametric processes that assume linear
damping. Collisions also modify the ion transport and
enhance long-term changes in the plasma conditions,
which can disrupt SBS. Although not always impor-
tant, the collisional effects we have identified should be
assessed for each application.
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FIGURE 5. Simulations of SBS in a Au plasma showing (a) reflectiv-
ities from collisionless (gray line) and collisional (black line) simula-
tions and (b) average ion energy as a function of position from
collisional simulation. (50-00-0898-1714pb01)
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